NEM Circuit - Cardionomic
Cardionomic Circuit related organs
The cardionomic circuit consists of the adrenal glands, cardiovascular system (CVS), and the autonomic nervous system (ANS). Activation of the cardionomic circuit starts when stress arrives on our doorstep. Starting at the brain and ending at the adrenal glands, the hypothalamic-pituitary-adrenal (HPA) hormonal axis is the first responder and main conduit that regulates our body’s everyday stress response. At the adrenal glands, cortisol output rises and acts as the body’s primary de-stressing hormone.

The cardiovascular system (CVS) and the autonomic nervous system (ANS) parts of the cardionomic circuit are also activated but largely placed on standby when stress is mild. It is only put on full throttle when stress is severe and cortisol output falls. This usually occurs after extended stress beyond our adrenal glands ability to handle, resulting in falling cortisol output. Clinically, we call this the state of adrenal exhaustion.

Therefore, the activation of the triad responsible for this circuit is progressive and tiered accordingly to the level of stress perceived. In other words, when stress is mild, not all parts of the triad need to be fully activated. The HPA hormonal system alone targeting the adrenal glands is sufficient to help the body deal with stress through the hormone cortisol. When stress is severe or chronic, the body may need more assistance.

Having three parts (the triad) working seamlessly together as one interconnected circuit balances the workload and prevents overuse of any one system (which can lead to dysfunction). Each part of the circuit is therefore called upon on an “as needed basis” as the body sees fit and they work synergistically with each other in a well-orchestrated progression.

Common Symptoms of Cardionomic Circuit Dysfunction

  • When CCD occurs, there also tends to be stepped progression of this systematic breakdown. Initial overload and eventual dysregulation of the first responder HPA hormonal axis that regulates adrenal function and cortisol output is usually the first thing to go wrong. With this comes metabolic imbalances such as exercise intolerance, sugar craving, hypoglycemia, and fatigue. The sympathoadrenal hormone system (SAS) of the Autonomic Nervous System (ANS), which regulates norepinephrine and epinephrine (also called adrenaline) output, is next functionally in the progression to be dysregulated. Anxiety, rapid heart rate, subclinical POTS, and insomnia are representative symptoms. Dysfunction progression affecting the CVS leads to damage of cardiac nodes (or “spark plug” of the heart that regulate heartbeats) are the last to fail. This results in PVCs, atrial fibrillation blood pressure instability (such as postural hypotension), and idiopathic supraventricular tachycardia.
  • Therefore, cardiac arrhythmias and vascular dysregulation are reactive consequences of the CVS’s response to stress. They tend to be late ramifications, but once symptoms surface, major disruptions to the cardionomic system and destabilization of the entire body can occur. This also means that different parts of the triad contribute differently to the overall stress defense mechanism and different symptoms with each level of dysfunction warn us of different degrees of danger within the system.
  • The speed of decline usually is gradual and can occur over years or decades. Symptoms are mild at first, such as occasional stress (either physical or emotional) related heart pounding, dizziness, breathlessness, high blood pressure, and heat intolerance. As CCD progresses, more debilitating symptoms such as postural orthostatic tachycardia (POTS), PVCs, atrial fibrillation, adrenaline rush, severe and chronic insomnia, and panic attacks surface. A person can be bedridden and rendered a cardiac cripple at the end. In rare occasions, CCD can also occur acutely, such as during an acute traumatic accident, during antibiotic therapy, after over exercise, or through extreme emotional stress.

Conditions Related to Cardionomic Circuit Dysfunction

  • Postural Orthostatic Tachycardia Syndrome ( POTS)
  • Orthostatic Hypotension
  • Heart Palpitations and Pounding
  • Reactive Sympathetic Response
  • Hypertension
  • Heart Rate Variability
  • Mitochondrial Dysfunction
  • Elevated LP(a)
  • Dizziness